转:https://blog.csdn.net/qq_36330643/article/details/78003952
平时经常看到牛顿法怎样怎样,一直不得要领,今天下午查了一下维基百科,写写我的认识,很多地方是直观理解,并没有严谨的证明。在我看来,牛顿法至少有两个应用方向,1、求方程的根,2、最优化。牛顿法涉及到方程求导,下面的讨论均是在连续可微的前提下讨论。
?
1、求解方程。
并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难。利用牛顿法,可以迭代求解。
原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f'(x0)
求解方程f(x)=0,即f(x0)+(x-x0)*f'(x0)=0,求解x =?x1=x0-f(x0)/f'(x0),因为这是利用泰勒公式的一阶展开,f(x) = f(x0)+(x-x0)f'(x0)处并不是完全相等,而是近似相等,这里求得的x1并不能让f(x)=0,只能说f(x1)的值比f(x0)更接近f(x)=0,于是乎,迭代求解的想法就很自然了,可以进而推出x(n+1)=x(n)-f(x(n))/f'(x(n)),通过迭代,这个式子必然在f(x*)=0的时候收敛。整个过程如下图:
?
2、牛顿法用于最优化
在最优化的问题中,线性最优化至少可以使用单纯行法求解,但对于非线性优化问题,牛顿法提供了一种求解的办法。假设任务是优化一个目标函数f,求函数f的极大极小问题,可以转化为求解函数f的导数f'=0的问题,这样求可以把优化问题看成方程求解问题(f'=0)。剩下的问题就和第一部分提到的牛顿法求解很相似了。
这次为了求解f'=0的根,把f(x)的泰勒展开,展开到2阶形式:
这个式子是成立的,当且仅当?Δx?无线趋近于0。此时上式等价与:
求解:
得出迭代公式:
一般认为牛顿法可以利用到曲线本身的信息,比梯度下降法更容易收敛(迭代更少次数),如下图是一个最小化一个目标方程的例子,红色曲线是利用牛顿法迭代求解,绿色曲线是利用梯度下降法求解。
在上面讨论的是2维情况,高维情况的牛顿迭代公式是:
其中H是hessian矩阵,定义为:
?
高维情况依然可以用牛顿迭代求解,但是问题是Hessian矩阵引入的复杂性,使得牛顿迭代求解的难度大大增加,但是已经有了解决这个问题的办法就是Quasi-Newton methond,不再直接计算hessian矩阵,而是每一步的时候使用梯度向量更新hessian矩阵的近似。
1、牛顿法应用范围
?牛顿法主要有两个应用方向:1、目标函数最优化求解。例:已知 f(x)的表达形式,,求?,及g(x)取最小值时的 x ?,即
? 由于||f(x)||通常为误差的二范数,此时这个模型也称为最小二乘模型,即。
? 2、方程的求解(根)。例:求方程的解:g(x) = 0,求 x ?
? 这两个应用方面都主要是针对g(x)为非线性函数的情况。2中,如果g(x)为线性情况下的求解通常使用最小二乘法求解。
牛顿法的核心思想是对函数进行泰勒展开。
2、牛顿法用于方程求解
? 对f(x)进行一阶泰勒公式展开:
?
? 此时,将非线性方程 g(x) = 0 近似为线性方程:
?
? 若 f’(x) != 0,则下一次迭代解为:
? 牛顿迭代示意图(因此Newton迭代法也称为切线法):
? 3、牛顿法用于函数最优化求解
对f(x)进行二阶泰勒公式展开:
此时,将非线性优化问题 min f(x) 近似为为二次函数的最优化求解问题:
对于(5)式的求解,即二次函数(抛物线函数)求最小值,对(5)式中的函数求导:
?
从本质上来讲,最优化求解问题的迭代形式都是:?,
其中k为系数,为函数的梯度(即函数值上升的方向),那么为下降的方向,
最优化问题的标准形式是:求目标函数最小值,只要每次迭代沿着下降的方向迭代那么将逐渐达到最优,
而牛顿将每次迭代的步长定为:。
4、补充
a、严格来讲,在“3、牛顿法用于函数最优化求解”中对函数二阶泰勒公式展开求最优值的方法称为:Newton法,
而在“2、牛顿法用于方程求解”中对函数一阶泰勒展开求零点的方法称为:Guass-Newton(高斯牛顿)法。
b、在上面的陈述中,如果x是一个向量,那么公式中:
?应该写成:,为Jacobi(雅克比)矩阵。
?应该写成:,为Hessian(海森)矩阵。
c、牛顿法的优点是收敛速度快,缺点是在用牛顿法进行最优化求解的时候需要求解Hessian矩阵。
因此,如果在目标函数的梯度和Hessian矩阵比较好求的时候应使用Newton法。
牛顿法在进行编程实现的时候有可能会失败,具体原因及解决方法见《最优化方法》-张薇 东北大学出版社 第155页。
?5、Newton法与Guass-Newton法之间的联系
对于优化问题?,即,当理论最优值为0时候,这个优化问题就变为了函数求解问题:
结论:当最优化问题的理论最小值为0时,Newton法求解就可变为Guass-Newton法求解。
另外:对f(x)进行二阶泰勒展开:
?
f(x)乘以f(x)的转置并忽略二次以上的项:
?
因此,当在最优解附近时,即满足,此时可认为:
? 6、扩展阅读
? a、修正牛顿(Newton)法
? b、共轭方向法与共轭梯度法
? c、拟牛顿法(避免求解Hessian矩阵):DFP算法、BFGS算法